Г 600 гидроэлеватор при каком давлении

Содержание:

Схема работы и забора воды

Данный алгоритм не является основным, он так же может быть заменен сбором схемы через водосборник ВС-125, или как часто его называют в пожарной охране «штаны».

После того, как система работающая от гидроэлеватора заполнится жидкостью и вода начнет прибывать, нужно довести показатель давления по манометру до 800 кПа и медленно, плавно открыть задвижку напора на пожарном насосе, по которому вода будет поступает напорную рукавную линию.

Способы забора воды с помощью гидроэлеватора

Очень важно не упускать из виду уровень оставшейся воды в цистерне. В случае, если производительность ствола будет превышать производительность гидроэлеваторного устройства, то вода в цистерне будет в дефиците и в скором времени у вас не останется резерва для стабильной работы схемы забора воды с помощью Г-600

Так для запуска системы необходимо 550 литров воды

В случае, если производительность ствола будет превышать производительность гидроэлеваторного устройства, то вода в цистерне будет в дефиците и в скором времени у вас не останется резерва для стабильной работы схемы забора воды с помощью Г-600. Так для запуска системы необходимо 550 литров воды.

Гидроэлеватор Г-600 является очень простым в управлении техническим средством. Во многом, это связано с тем, что в нем нет механический, то есть движущихся частей.

По той же причине, срок его эксплуатации при идеальных условиях ограничен лишь коррозией материалов, из которых он выполнен.

Очень часто гидроэлеваторные агрегаты – это единственный выход при необходимости гидромеханизации различных архитектурных, строительных, горных работах в деятельности не связанной с пожарной охраной.

Также такое устройство будет очень полезным в процессе удаления шламов на фабриках обогащения различных веществ и, почти незаменимым, в котельных и электроэнергетических станциях.

Необходимое количество воды для запуска гидроэлеваторной системы

3.Газоструйные насосы

Газоструйные насосы в пожарной технике нашли применение в качестве вакуумных аппаратов для создания разряжения во всасывающей рукавной линии и в центробежном насосе. Работают от выхлопных газов двигателей пожарных автомобилей, а на мотопомпе МП–800Б – на воздухе, подаваемом одним из цилиндров двигателя, работающем при включении вакуум–аппарата как компрессор. В связи с изложенным, все газоструйные аппараты на всех отечественных эксплуатирующихся пожарных автомобилях устанавливаются на выхлопных тракторах двигателей перед глушителем.

Конструктивно большинство газоструйных вакуумных аппаратов отличаются незначительно.

Назначение – первоначальное заполнение насоса и всасывающей линии водой при работе из водоема осуществляется вакуумной системой, состоящей из вакуумного струйного насоса, установленного на выхлопной линии автомобиля, вакуумного затвора, установленного в верхней части насоса, трубопроводов и рычагов управления.

Рисунок 10 — Затвор вакуумный

Рисунок 11 — Затвор вакуумный

Рисунок 12 — Затвор вакуумный

Вакуумный затвор служит для соединения полости насоса с камерой разрежения диффузора вакуумного струйного насоса при отсасывании воздуха из полости насоса.

При повороте до упора на себя рукоятки 8 (рис. 7) кулачок валика открывает нижний клапан 12 (верхний клапан 7 закрыт) и соединяет полость насоса с камерой разрежения вакуумного струйного насоса. При включении вакуумного затвора кулачок валика открывает верхний клапан (нижний клапан закрыт) и соединяет трубопровод, идущий к вакуумному струйному насосу, с атмосферой через отверстие, имеющееся в корпусе вакуумного затвора, что способствует быстрому сливу воды .из трубопровода.

Блок вакуумного струйного насоса и газовой сирены служит для создания в камере диффузора разрежения и получения сигнала тревоги.

Газовая сирена включается из кабины водителя рычагом 1 (рис. 2) через систему тяг 4 и рычаг 5 (рис. 3). В обычном положении заслонки прижаты пружиной к своим седлам и выхлопные газы проходят свободно по трубопроводам. При включении сирены заслонка 3 перекрывает прямое движение выхлопных газов, и они попадают через распределитель в резонатор /. Положение заслонки фиксируется «рычагом и давлением выхлопных газов.

К нижнему патрубку корпуса через прокладку закреплен диффузор 11 с соплом 10.

Включение вакуумного струйного насоса из насосного отделения производится рычагом 8 (см. рис. 10) через систему тяг 5. При включении заслонки 12 (рис. 10), перекрывается прямое движение выхлопных газов и они попадают в сопло и далее через диффузор в атмосферу.

Камера разрежения соединена через трубу и вакуумный затвор с внутренней полостью насоса.

Чтобы включить вакуумную систему, необходимо открыть вакуумный затвор, включить вакуумный струйный насос и увеличить обороты двигателя. Когда вода заполнит всасывающий рукав, насос и появится в глазке 1 (рис. 7) вакуумного затвора, необходимо закрыть затвор, снизить обороты и включить вакуумный струйный насос.

Рисунок 13 — Система управления двигателем вакуумного насоса

Таблица характеристик

Обратите внимание: справочные данные немного отличаются от указанных в таблице по СВПЭ (приведены выше)

Производительность по пене, кратность и другие параметры СВП и СВПЭ

Следуя из представленных характеристик можно сделать выводы:

1. Что одинакова у этих двух пожарных стволов кратность пены и рабочее давление. Под кратностью пены принято понимать отношение общего объема полученной в стволе пены к тому объему исходного раствора пенообразователя, который использовался для генерирования пены.

2. Расход ствола СВПЭ-4 по воде и пене объясняется его производительностью объему произведенной пены, которая составляет 4 кубических метра в минуту, а рабочее давление, которое должно быть перед стволом 0,6 Мпа. При этом длина подачи струи пены составляет не меньше 18 метров, а весит он 2,8 кг. Поскольку у СВПЭ-8 производительность в два раза выше и равняется 8 кубическим метрам пены в минуту, то и расход ствола для работы соответственно будет большим. Он обладает таким же рабочим давлением, то есть 0,6 Мпа. А вот длина подачи струи подаваемой огнетушащей смеси у ствола составляет 20 метров. Ствол СВПЭ-8 весит всего  3,8 кг, что позволят оперировать им достаточно свободно.

3. Благодаря своему невысокому весу и высокой эффективности  эти пожарные стволы стали столь востребованными среди подразделений МЧС. К тому же технология их изготовления обеспечивает взаимозаменяемость деталей и составных частей. Это позволяет легко заменить вышедший из строя элемент пожарного ствола на новый. Данное пожарное оборудование изготавливается из сплава алюминия и обычно поставляется в уже собранном виде. Испытания материала, из которого производятся воздушно-пенные стволы, на прочность и их герметичность проводят при давлении воды, равном 0,9 Мпа. Это тестирование длится одну минуту. Широкое применение пожарных стволов возможно в любых районах нашей страны – с холодным, тропическим и умеренным климатом.

  • ГОСТ Р 53251-2009 Техника пожарная. Стволы воздушно-пенные. Общие технические требования. Методы испытаний;
  • М.Д. Безбородько, Учебник Пожарная техника, Москва, 2004;
  • Теребнев В.В., Семенов А.О., Справочник Пожарная и аварийно-спасательная техника;
  • Паспорт устройств ствол воздушно-пенный с эжектирующим устройством СВПЭ-2, СВПЭ-4, СВПЭ-8 ТУ У 14217031.003-95 (ООО «Харцызский машиностроительный завод») Код ДКПП 29.24.24.700.

1.2. Техническая характеристика гидроэлеватора Г–600

Производительность при давлении в напорной линии перед гидроэлеватором 0,8 МПа (8 кгс/см2),
л/мин, не менее 600

Рабочий расход воды при давлении 0,8 МПа
(8 кгс/см2), л/мин 550

Рабочее давление, МПа (кгс/см2) 0,2…1,2

Давление за гидроэлеватором при производительности 600 л/мин, не менее 0,17

Наибольшая высота подъема подсасываемой воды, м, при рабочем давлении, МПа:
1,2 (12 кгс/см2) 19

Наибольшая высота подъема подсасываемой воды, м, при рабочем давлении, МПа:
0,2 (2 кгс/см2) 15

Условный проход, мм, патрубка:
входного 70

Условный проход, мм, патрубка:
выходного 80

Забор и подачу воды Г–600 осуществляют в следующем порядке:

  • установить АЦ и собрать рукавную линию по схеме, устранить резкие перегибы в рукавах, в цистерну через люк опустить напорно–всасывающий рукав и для устранения резких перегибов закрепить его рукавной задержкой;
  • выжав сцепление, включить коробку отбора мощности на насос и плавно отпустить педаль сцепления;
  • выключить сцепление рычагом из насосного отсека;
    открыть одну напорную задвижку на насосе (к гидроэлеватору) и задвижку на трубопроводе от цистерны;
  • включить сцепление;
  • рычагом «Газ» увеличить частоту вращения вала насоса до 2000 об/мин;
  • при возвращении воды от гидроэлеватора в цистерну открыть задвижку на напорном коллекторе насоса (к стволу);
  • установить необходимый напор на насосе (70…80м);
  • следить за уровнем воды в цистерне и регулировать его открыванием (закрыванием) задвижки на напорном коллекторе насоса (к стволу) и частотой вращения вала насоса рукояткой «Газ».

Гидроэлеватор Г–600 обеспечивает работу одного ствола со спрыском диаметром 19 мм или трех стволов со спрыском диаметром 13 мм.

В случаях когда необходимо подавать воду на тушение пожаров через два ствола (расход до 10 л/с), а диаметр трубопровода из цистерны в насос недостаточен для поддержания уровня воды в емкости и стабильной работы насосной установки, необходимо всасывающий рукав от насоса опустить в емкость через люк (рис. 4).

Рисунок 4

Для насосов ПН–40 и ПН–30 в этом случае достаточно использовать водосборник, на один патрубок которого установлена заглушка, а к другому подсоединен рукав от гидроэлеватора (рис.5).

Рисунок 5

Во время запуска вакуумный клапан должен быть открыт для выпуска воздуха. После запуска такой системы необходимо закрыть задвижку от цистерны, и затем подать воду к стволам.

В некоторых случаях устанавливают разветвление перед водосборником, через которое выпускают воздух при запуске системы, воздух в насос не попадает, что ускоряет запуск системы.

При подаче воды на пожар в количестве 10…20 л/с используют два гидроэлеватора, включаемые параллельно (рис. г, д). Запускают в работу гидроэлеваторы поочередно: сначала один, потом другой (рис. 6).

Рисунок 6

Наиболее характерными ошибками при работе с гидроэлеваторами являются:

  • перекручивание и перегибы рукавов при прокладке рукавных линий;
  • резкое открывание напорных задвижек при подаче воды к стволам;
  • снижение давления в рукавной линии от гидроэлеватора к водосборнику на всасывающей полости насоса;
  • при использовании водосборника подача воды к стволам при открытой задвижке на трубопроводе от емкости цистерны;
  • неполное открывание напорной задвижки на насосе при подаче воды к гидроэлеватору при запуске;
  • превышение предельного расстояния до водоисточника

При использовании гидроэлеваторов для забора и подачи воды к пожару необходимо знать количество воды, необходимое для запуска системы. Воды в емкости должно быть достаточно для заполнения всей рукавной системы до гидроэлеватора и от него к насосу. С учетом продолжительности запуска системы расчетный объем воды должен быть с коэффициентом запаса не менее двух.

Данные по объему воды в одном пожарном рукаве длиной 20 м при диаметре рукава: 51 мм — 40 л; 66 мм — 70 л и 77 мм — 95 л.
При техническом обслуживании гидроэлеваторов необходимо проверять; наличие и исправность резиновых прокладок в соединительных головках; крепление и чистоту решеток во всасывающем отверстии; плотность фланцевых соединений и затяжку гаек; чистоту отверстия конического насадка.

Устройство

Корпус насоса НШН-600 отлит из серого чугуна и имеет толстые стенки. На нижней части картера выполнены приливы, выполняющие роль опор. В них имеются цилиндрические отверстия, через которые агрегат крепится на рабочей поверхности (например, бампере). На верхней части имеются два патрубка с элементами крепления шлангов. Во внутренней части корпуса выполнены два канала цилиндрической формы, в которых вращаются стальные шестерни. Эти детали изготовлены из стали и имеют одинаковую форму и число зубьев. Высокая точность изготовления узлов обеспечивает минимальный зазор между боковыми частями шестерен и крышками (максимум 0,18 мм), что позволяет получать высокие значения вакуума и напора.

Валы шестерен установлены на шариковых подшипниках в крышках насоса НШН-600. Герметичность подшипниковых узлов обеспечивается резиновыми сальниками. Для обслуживания опор имеются две масленки, через которые периодически добавляется свежая порция смазки (такую операцию проводят при регламентном обслуживании).

Внутри соединительного канала, размещенного между впускным и напорным трубопроводами, установлен предохранительный клапан. При внезапном перекрытии канала подачи или напора этот клапан обеспечивает циркуляцию жидкости внутри агрегата. На верхней части картера выполнено место для установки манометра давления напора и монтажа прибора измерения вакуума в канале впуска.

Дополнения и пояснения

  1. При заполнении рукавов водой воздух из обратной линии поступает в насос, поэтому до конца запуска гидроэлеваторного кольца вакуум-клапан должен быть открыт.
  2. Напорную линию гидроэлеватора нужно присоединить к штуцеру, идущему от нижней спиральной камеры насоса. У насосов правого вращения она будет справа по ходу машины, а у насосов левого вращения – слева. Такое соединение улучшает напор воды перед гидроэлеватором. При подаче воды от верхнего патрубка в гидроэлеватор с водой поступают пузырьки воздуха.
  3. Поскольку поступление воды в насос при запуске ограничено, он не может дать большого напора. Учитывая это, обороты двигателя следует увеличить до тех пор, пока насос работает ровно.

Внимание!!! Появление вибрации означает, что обороты нужно снизить

  1. После запуска гидроэлеваторного кольца вода по обратной линии возвращается с напором до 3-4 атм. Если вентиль из цистерны закрыть не сразу, то пода пойдет через него обратно и заполнит цистерну.
  2. Закрывая вентиль из цистерны, давление на насосе надо держать не более 5 атм, иначе у вентиля, за счет обратного движения воды, может оборвать клапан.
  3. Если в момент закрытия вентиля из цистерны 8 гидроэлеваторном кольце появятся перебои, вентиль надо приоткрыть, не меняя оборотов дождаться восстановления нормальной работы, и закрыть снова.
  4. Свободный штуцер сборника надо закрывать заглушкой, иначе при запуске гидроэлеватора в насос подсасывается воздух.
  5. Для нормального поступления воды сетка гидроэлеватора не должна ложиться на дно водоема, а обратный рукав не должен иметь резких перегибов и заломов, для чего сборник на насос надо ставить с наклоном.
  6. При отказе мановакуумметра (например зимой) минимально допустимое давление в обратной линии определяется продавливанием рукава пальцами руки.
  7. Необходимо помнить, что при работе одного гидроэлеваторного кольца на полную мощность, насос должен обеспечить производительность 1200 л/мин при напоре 8 атм.
  8. Вентиль из цистерны лучше открывать перед включением насоса, но при этом часть воды может уйти в обратную линию.

Дополнительный материал по теме:

  1. Схема при заборе воды «насос-гидроэлеватор-цистерна-насос»
  2. Схема при заборе воды «насос-гидроэлеватор-разветвление-насос»
  3. Работа от гидранта и с гидроэлеватором
  4. Подача пены от автоцистерны без и с установкой на водоисточник (гидрант), с забором пенообразователя от внешней емкости

Генераторы пены гпс. Короткая шпора РТП Производительность ствола гпс 600 по раствору составляет

Пеногенераторы средней кратности, такие как ГПС-200, ГПС-600, ГПС-2000 предназначены для получения воздушно-механической пены из водного раствора пенообразователя, а также формирования струи и подачи ее при тушении пожара любой сложности, горючих и легковоспламеняющихся жидкостей.

Устройство и принцип действия ГПС

Генераторы пены по своей конструкции и принципу работы одинаковы и отличаются лишь геометрическими формами, размерами корпуса и распылителя.

Так, на рисунке 1 изображен генератор пены ГПС-600, который состоит из насадок, корпуса с направляющим устройством, распылителя, пакета сеток и напорной соединительной головки.

Рисунок 1

1 – насадок, 2 – кассета сеток, 3 – корпус генератора, 4 – распылитель, 5 – корпус распылителя, 6 – головка соединительная ГМН-70 ТУУ 29.2-30711025-012-2001

В сетке имеются ячейки по 0,8-1 мм, которые сделаны из проволоки толщиной 0,3-0,4 мм.Для получения воздушно-механической пены используется раствор пенообразователя. Он может быть как общего назначения, синтетический, углеводородный, так и биоразлагаемый.

Через распылитель раствор пенообразователя под давлением выбрасывается на пакет сеток, создавая тем самым разрежение в корпусе. Через заднюю открытую часть корпуса воздух устремляется в зону пониженного давления. В корпусе пенообразователь интенсивно перемешивается с воздухом, и образуются пузырьки воздушно-механической пены, которые имеют приблизительно одинаковый размер.

Устройство и принцип действия ГПСС

Также существуют и стационарные генераторы пены – ГПСС-600 и ГПСС-2000 , устройство которых мы рассмотрим чуть ниже.

Они предназначены к применению в стационарных установках пенного пожаротушения резервуаров с нефтью и нефтепродуктами.

Генератор стационарный может применяться с указанной целью и в других отраслях промышленности, однако, лишь в пределах его технической характеристики.

ГПСС-600 и ГПСС-2000 соответствуют климатическому исполнению У категории размещения 1, условиям работы в атмосфере типа II ГОСТ 15150-69.

На рисунке 2 подробно представлены все составляющие стационарного пеногенератора.

Рисунок 2

1 – корпус; 2, 3, 7 – фланцы; 4 – переходной фланец для установки генератора; 5 – резервуар; 6 – растворопровод стационарной системы пожаротушения; 8 – распылитель; 9 – крышка; 10 – шарнир; 11 – заслонка; 12, 13 – шарнир; 14 – вилка; 15 – канат; 16 – ручка; 17 – упор; 18 – болт; 19 – тяга; 20 – шпилька; 21 – гайка; 22 – контргайка; 23 – ограничитель; 24 – проволока

Входное отверстие пеногенератора расположено на фланце 3, к которому присоединяется растворопровод стационарной системы пожаротушения 6. Установка и крепление пеногенератора на резервуаре осуществляется с помощью монтажного фланца 2, на котором имеется выходное отверстие, закрываемое крышкой 9, которая установлена на шарнире 10.

Своим свободным концом вилка 14 установлена на упор 17, закрепленный в корпусе пеногенератора 1 болтом 18. Тяга 19 присоединена своими концами к крышке 9 и 20. Крышка 9 притянута к кромке выходного отверстия пеногенератора тягой 19 за счет усилия, создаваемого вращением гайки 21 по резьбе шпильки 20. При этом гайка 21 своей торцовой поверхностью упирается в вилку 14.

Положение гайки 21, соответствующее необходимому усилию герметизации стыка крышки 9 и кромки выходного отверстия пеногенератора, фиксируется на шпильке 20 контргайкой 22. К шпильке 20 и тяге 19 присоединен ограничитель 23 угла открывания крышки 9. Второй конец ограничителя 23 закреплен болтом к верхней части корпуса.

Для предохранения рычажной системы пеногенератора от поломок вилка 14 закрепляется (только на период транспортирования) проволокой 24.

ГПС и ГПСС представляют особый водоструйный аппарат переносного типа, которые состоят из следующих основных частей: кассеты, сеток, ремня и корпуса.

К последнему при помощи четырех винтов крепится корпус распылителя, а также соединительная головка. ПО ВЗРК рада предложить вам следующие виды генераторов пены средней кратности: ГПС-600, ГПС–2000.

РУКАВА

Диаметр: 51–40литров66–70литров

77–90литров

Для получения 1м3 пены0,6 литров ПО

8,4 литра воды

Требуемый расход огнетушащих средств Q тр т=F n xI трQ тр т-требуемый расход огнетушащих средствF n-площадь пожараI тр-требуемая интенсивность подачи огнетушащих средств

Пеносмесители

В пожарной технике используются пеносмесители двух типов: предвключенные и проходные. К предвключенным относятся стационарные пеносмесители ПС–5 и ПС–12, устанавливаемые на пожарных насосах. Схема установки этих пеносмесителей представлена на рис.7.

Рисунок 7 — Пеносмеситель

Пеносмеситель устанавливается на всасывающем патрубке насоса. Сопло смесителя с помощью трубопровода соединено с напорным коллектором насоса. Смесительная камера струйного насоса пеносмесителя через пробковый кран, имеющий несколько калиброванных отверстий, связана с цистерной и пенобаком.

Как следует из приведенной схемы, рабочая жидкость под давлением поступает из напорной полости насоса к соплу пеносмесителя 2 и далее через диффузор во всасывающую полость насоса 1. Дозировка пенообразователя, подсасываемого в кольцевое пространство сопла из пенобака 3 или цистерны 4, осуществляется дозатором, конструктивно соединенным со смесительной камерой струйного насоса. Подача раствора к пенным стволам или пеногенераторам регулируется напором насоса.

При работе предвключенных пеносмесителей часть подачи насоса (до 25%) расходуется на работу пеносмесителя. Дозаторы на пеносмесителях бывают ручные или автоматические. При ручной дозировке пробковым краном имеет место не соответствие между количеством воды, проходимой через смеситель, и пенообразователя, т.е. изменяется процентное соотношение пенообразователя и воды в подаваемом растворе при изменении давления на насосе. Это приводит к снижению качества воздушно–механической пены. В связи с этим автоматические дозаторы более предпочтительны.

К проходным пеносмесителям относятся переносные смесители ПС–1, ПС–2 и ПС–3. Они устанавливаются непосредственно в напорных магистральных или рабочих рукавных линиях. Пенообразователь к смесителю подается по шлангу из посторонней емкости. Достоинством таких смесителей является возможность получения небольшого количества воздушно–механической пены с малыми затратами пенообразователя за счет снижения его потерь в рукавных линиях, т.к. смеситель может быть установлен в непосредственной близости от пенного ствола или пеногенератора.

Схема пеносмесителя ПС–5 представлена на рис.5. Он состоит из корпуса 1, дозатора 2, пробки дозатора 3, обратного клапана 4, сопла 5, диффузора 6. Дозатор 2 осуществляет регулировку подачи пенообразователя в пяти рабочих положениях пробки крана 3. Цифры на шкале пеносмесителя обозначают число пеногенераторов ГПС–600, работающих от данного насоса. Для подачи пенообразователя маховичок пробки крана поварачивают до совпадения стрелки с нужным делением шкалы. Обратный клапан 4 служит для предотвращения попадания воды в емкость с пенообразователем при работе насоса от водопроводной линии. Во время работы насоса с пеносмесителем напор на насосе должен быть 0,7–0,8 МПа, подпор во всасывающей линии при работе от водопроводной сети – не более 0,25 МПа.

Рисунок 8 — Схема пеносмесителя ПС–5

Пеносмеситель ПС–12 устанавливается на пожарном насосе ПН–110Б. Максимальная подача пенообразователя 4,3 л/с, что обеспечивает одновременную работу 12 пеногенераторов ГПС–600. Напор перед смесителем во время работы должен быть не менее 0,75 МПа, подпор во всасывающей линии – не более 0,15 МПа. Принципиальная схема пеносмесителя ПС–12 аналогична ранее приведенной.

Дозатор смесителя выполнен в виде ступенчатой пробки, имеющей три фиксированных положения: на 6, 9 и 12 пеногенераторов ГПС–600. Фиксация стержня обеспечивается подпружиненным шариком, а перемещение – рычагом. На лыске стержня нанесены цифры, указывающие положение дозатора. Конструкция переносного смесителя (ПС) представлена на рис.6. Известны три марки переносных смесителей ПС–1, ПС–2, ПС–3. Где цифра означает количество одновременно подключаемых пеногенераторов ГПС–600. Каждый из ПС представляет собой струйный насос, состоящий из сопла, диффузора и вакуум–камеры, отлитых из алюминиевого сплава АЛ–9В.

Рисунок 9 — Схема переносного смесителя

В камеру ввернут штуцер с шариковым обратным клапаном. К штуцеру с помощью накидной гайки присоединен резиновый шланг для подачи пенообразователя. Техническая характеристика переносных смесителей представлена в таблице 1.

Принцип функционирования пожарного гидроэлеватора Г-600

Высокоскоростной водопоток движется через проточную область оборудования, провоцируя при выходе изменение давления. Перемещаемый поток подается в смеситель устройства. Образованная водная смесь попадает в диффузорный элемент, где ее скорость становится меньше. Так как часть кинетической энергии струи переходит в потенциальную энергию потока, давление струи повышается. Благодаря повышению давления струи, водная смесь передвигается по трубопроводу.

Гидроэлеваторы Г-600, предлагаемые компанией «Магазин 01», сертифицированы. Устройства прошли необходимые испытания под давлением, подтвердившие их водонепроницаемость и прочностные характеристики.

“>

Adblock detector

Работа от гидранта. Работа с гидроэлеватором. Схемы забора воды.

Необходимые действия при работе от гидранта 

  • Установить колонку на гидрант

Присоединить 2 напорно-всасывающих рукава от колонки к всасывающему штуцеру насоса через водосборник. Закрыть сливной краник и все вентили у насоса. Открыть полностью клапан гидранта. Открыть шиберы у пожарной колонки. Выпустить воздух из насоса через вакуум-клапан. Включить насос. Открыть выкидной штуцер. Установить необходимое давление. При необходимости открыть вентили теплообменника.

Наиболее характерные ошибки допускаемые водителями при работе
  1. Неполное открывалке клапана гидранта и шиберов колонки.
  2. Вращение центральным ключом при открытых шиберах колонки.
  3. Выключение сцепления при больших оборотах двигателя.
  4. Резкое включение сцепления.
Дополнения и пояснения

При работе с гидрантом необходимо прежде всего уяснить конструкцию гидранта московского образца и назначение разгрузочного клапана. Необходимо различать гидрант московского образца и новые гидранты ГОСТ 8220—85, т. к. для полного открытия клапана у первого требуется сделать 11—12 полных оборотов, а у второго 12—15 оборотов центральным ключом колонки (т. о. не менее 24 полуоборотов).

Полное открывание клапана должно контролироваться по прекращению выхода воды из сливного отверстия гидранта.

Работа с гидроэлеватором

Гидроэлеваторное кольцо может быть составлено по следующим основным схемам: (для перехода нажмите на каждую схему)

  1. Насос — гидроэлеватор — насос.
  2. Насос — гидроэлеватор — разветвление — насос.
  3. Насос — гидроэлеватор — цистерна — насос (ленинградский способ).

Кроме этого гидроэлеватор может использоваться для уборки воды из помещении с установкой автомобиля (мотопомпы) на водоисточник.

Работа гидроэлеваторгого кольца с использование рукавов 66 мм

Для работы гидроэлеватора Г-600 должны применяться прорезиненные рукава диаметром 77 мм. При прокладке линии из рукавов 66 мм производительность гидроэлеватора резко падает, т. к. эти рукава обладают значительно большим сопротивлением. Так при спрыске 19 мм гидроэлеватор может обеспечить подачу воды с расстояния только до 40 м без подъема. Полноценную замену могут дать 2 параллельные обратные линии из рукавов 66 мм (см. рис. 1). Для этой цели на гидроэлеватор присоединяют тройник от старого лафетного ствола ПЛС-75 или изготавливают его специально и держат навернутым на диффузоре вместо муфтовой головки. Запуск системы не отличается от описанных способов ничем.

Забор воды гидроэлеватором с установкой автомобиля на водоисточник

При наличии водоисточника (гидранта или водоема) его надо использовать при уборке (откачке) воды из помещения. Для этого вода из водоисточника подается насосом в напорную линию гидроэлеватора, а от гидроэлеватора идет в канализацию (см. рис. 2). Такая схема надежнее в работе, чем замкнутое гидроэлеваторное кольцо и не требует специальных навыков.

Давление на насосе можно держать от 6 до 9 атм. В отдельных случаях, при напоре в гидранте 3—4 атм, уборку воды можно проводить без установки автомобиля, присоединив напорную линию гидроэлеватора непосредственно к колонке.

УКТП ПУРГА

Не стоит обходить своим вниманием и установку УКТП ПУРГА 5
, которая считается эффективным средством для ликвидации пожаров на большой площади. Отметим основные рабочие характеристики это агрегата:

Отметим основные рабочие характеристики это агрегата:

  • производительность пены составляет не менее 21000 литров в одну расчётную минуту;
  • максимальный расход воды – 6 л/м;
  • показатель кратности генерируемой пены равен 70;
  • дальность пенной струи достигает 25 метров.
  • вес ПУРГИ (с корпусом из нержавеющей стали) составляет 8 кг.

Как можно видеть, каждая из представленных модификаций, может достойно показать себя в чрезвычайной ситуации. Делайте правильный выбор, решая вопрос борьбы с пожаром!

Статью прислал: R600

Пеногенератор ГПС-600
необходим для получения воздушно-механической пены, путем преобразования ее из водного раствора пенообразователя.

При этом кратность пены ГПС-600
– 70-100, при этом генератор ГПС-600 прекрасно справляется с тушением жидкостей, которые легко воспламеняются, а производительность позволяет ему справиться с возгоранием в помещениях, которые труднодоступны.

Генератор пены состоит из:

  • корпуса, к которому прикреплено устройство, направляющее пену
  • соединительной головки
  • пакет сеток.

Его корпус изготовлен из сплавов такого металла, как алюминий, так что работа с ГПС-600 довольно проста.

Описывая ТТХ, стоит отметить, что производительность ГПС-600 составляет 600 литров пены с секунду.

Площадь тушения ГПС-600

  • ЛВЖ – 75 м 2
  • ГЖ – 120 м 2

Глубина тушения
5 метров

В целом, производительность ГПС-600 находится весьма на приличном уровне. Вес установка ГПС-600 имеет небольшой – всего 4,5 кг, при этом площадь тушения весьма внушительна.

Расход ствола ГПС-600

  • по пене (пенообразователь) составляет 0,36 л/с
  • по воде – 5,64 л/с.

Пеногенератор ГПС-200
немного уступает своему «большому» собрату ГПС-600. Это, в первую очередь, касается производительности, которая для этого устройства составляет в три раза меньше, то есть 200 л/с пены.

Пример подачи пены из ГПС-600

Площадь тушения ГПС-200

  • ЛВЖ – 25 м 2
  • ГЖ – 40 м 2

Корпус и конструкция этого устройства точно такая же, как и у уже описанного нами выше устройства.

Вес ГПС составляет всего 2,4 кг, работать с пеногенератором очень просто. При этом дальность подачи пены составляет 10 метров.

Самым большим из пеногенераторов средней кратности является ГПС-2000, по своей конструкции не слишком отличается от других пеногенераторов. Разница между ними только в характеристиках. Поскольку он обладает самой большой производительностью – 2000 л/с по пене, соответственно имеет и самый значительный вес – 13 кг. Благодаря тому, что дальность подачи пены у ГПС-2000 составляет 14 метров, его целесообразно применять при больших возгораниях или в больших помещениях, а так же на пожароопасном производстве.

Из-за размеров внушительными также являются и показатели расхода по пенобразователю и по воде.

Площадь тушения ГПС-2000

  • ЛВЖ – 250 м 2
  • ГЖ – 400 м 2

Отдельно стоит отметить установку для тушения крупных пожаров УКТП Пурга-5.

По своим размерам и некоторым ТТХ Пурга-5 соответствует пеногенератору ГПС-600.

Однако, это касается только расхода водного раствора при работе, а также рабочему давлению.

Другие параметры более мощные, поэтому площадь тушения ствола Пурга-5 намного больше.

  • дальность подачи струи пены составляет 20-25 метров
  • расход пенообразователя 0,36 л/c
  • производительность по пене составляет 21000 литров в минуту.
  • кратность пены 70
  • Расход воды (водного раствора пенообразователя), 5-6 л/с
  • габаритные размеры 610х365х310

Корпус Пурга-5 изготовлен из нержавеющей стали и покрыт слоем порошковой краски, вес составляет 8 кг.

Проведенные испытания УКТП Пурга-5 показывают большую производительную мощность данного пеногенератора. Особенно это актуально при тушении пожара на крупной по территории площади, или же при ликвидации пожара причиной которого стали легковоспламеняющиеся жидкости.

Эффективность пожаротушения зависит в первую очередь от комплектации пожарного оборудования и применения специальных средств борьбы с пожаром. Одними из наиболее распространенных и действенных устройств для ликвидации огня являются ручные пожарные стволы. Воздушно-механический способ подачи пены ручными стволами
позволяет значительно ускорить процесс пожаротушения.

Тушение пеной весьма результативный способ тушения единовременно нескольких видов (классов) пожаров за кратчайшее время. Использование пенных пожарных стволов
даёт возможность применять результативно одинаковый объём воды, в сопоставлении, например, со стандартными водяными стволами.

Принцип работы

Принцип работы ствола СВП заключается в следующем: поток водного раствора пенообразователя по рукавной линии подводится к корпусу 1, который выполнен коническим с целью увеличения скорости потока.

Выходя из отверстия корпуса 2, струя, расширяясь, создает разряжение (вакуум) в конусной камере 3, под действием которого происходит распыление и одновременно в отверстия, расположенные равномерно по поверхности трубы 4 подсасывается воздух.

В полости трубы 4 происходит дальнейшее раздробление распыленных капель водного раствора пенообразователя в результате соударений их между собой и ударов о поверхность стенок самой трубы, а также происходит смешивание их с подсосанным через отверстия воздухом и образование пузырьков воздушно-механической пены. Струю воздушно-механической пены на выходе из ствола необходимо направлять на очаг пожара.

При подготовке ствола к работе необходимо к нему надежно подсоединить соединительную головку напорного рукава, подводящего водный раствор пенообразователя.

В процессе работы ствол необходимо надежно держать в руках и следить чтобы рабочее давление у ствола было в пределах 0,6+0,05 МПа (6+0,5 кгс/см2).

Принцип образования пены в стволе СВПЭ отличается от СВП тем, что в приемную камеру поступает не пенообразующий раствор, а вода, которая, проходя по центральному отверстию, создает разрежение в вакуумной камере. Через ниппель в вакуумную камеру по шлангу из ранцевого бочка или другой емкости подсасывается пенообразователь.

Справочная информация

ДокументыЗаконыИзвещенияУтверждения документовДоговораЗапросы предложенийТехнические заданияПланы развитияДокументоведениеАналитикаМероприятияКонкурсыИтогиАдминистрации городовПриказыКонтрактыВыполнение работПротоколы рассмотрения заявокАукционыПроектыПротоколыБюджетные организацииМуниципалитетыРайоныОбразованияПрограммыОтчетыпо упоминаниямДокументная базаЦенные бумагиПоложенияФинансовые документыПостановленияРубрикатор по темамФинансыгорода Российской Федерациирегионыпо точным датамРегламентыТерминыНаучная терминологияФинансоваяЭкономическаяВремяДаты2015 год2016 годДокументы в финансовой сферев инвестиционной

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector